Светодиодные светильники (LED-лампы) набирают все больше популярности из-за выгодного соотношения экономичности, длительного срока службы и цены. Наверное многим интересно, как устроены внутри эти современные высокотехнологичные изделия. В этой статье я попытался сделать обзор конструкции некоторых светодиодных ламп, которые я смог достать и испытать.
[Как работает светодиодная лампа]
Лампа на основе LED состоит обычно из большого количества светодиодов (14..32 штуки), соединенных последовательно и подключенных к стабилизатору тока. Стабилизатор тока состоит из выпрямителя, сглаживающего конденсатора и ШИМ-контроллера на микросхеме, которая и осуществляет стабилизацию тока через светодиоды. В микросхему встроен даже ключевой элемент на полевом транзисторе, нагруженный на LC-фильтр или выходной трансформатор. Такое построение контроллера обеспечивает высокий КПД контроллера (82..95%), стабильный выходной ток при больших колебаниях входного напряжения, и довольно высокий коэффициент активной мощности [3] (особенно если ШИМ-контроллер построен специальным образом, не на дешевой микросхеме, и имеет на выходе выпрямителя конденсатор малой емкости).
Встречаются лампы с простейшим ограничителем тока на основе конденсатора, т. е. схема простейшая, состоящая из токоограничивающего конденсатора, диодного моста и выходного сглаживающего конденсатора (см. далее схемы ламп Jazzway 7.5w 2700K GU10 и ASD JCDRC 7.5w).
Такой ограничитель тока обладает многочисленными недостатками - большая реактивная мощность, отдаваемая в питающую сеть, высокие пульсации света на частоте 100 Гц, зависимость светового потока от входного напряжения, невысокая надежность (лампа может выйти из строя при наличии больших импульсных помех в питающей сети). Кроме того, будет ухудшаться коэффициент мощности питающей сети [3], и тем больше, чем больше таких ламп на простых контроллерах будет подключено.
[Описание конструкций светодиодных ламп]
Мне удалось протестировать и разобраться во внутреннем устройстве светодиодных ламп нескольких производителей.
На фото лампа BBK P653F, лампа P654F выглядит так же.
Лампа разборная, конструкция у ламп P653F и P654F абсолютно одинаковая, отличаются они только излучающим узлом.
32 светодиода установлены на алюминиевой плате и включены последовательно, на один светодиод приходится 49.3 / 32 = 1.54 вольта. Плата через термопасту прилегает к радиатору. Температура платы возле светодиода 53oC.
Контроллер построен на микросхеме SM7525, дает на выходе 49.3V 0.106A. Не понравилось в конструкции лампы то, что контроллер установлен наполовину в цоколь, наполовину в алюминиевом радиаторе, но никакой изоляции между радиатором и платой контроллера нет.
Схема простая, однако немного запутанная из-за непривычного включения индуктивности и ключа. На входе диодного моста на плате имеется место для предохранителя, но он не установлен.
Ниже показаны осциллограммы входного тока и светового потока лампы.
Пульсации светового потока почти такие же, как и у ламп PC73C и PC74C (9% на частоте 50 кГц). Радиопомех больше (см. таблицу 2).
На фото лампа BBK PC73C. Лампа PC74C по конструкции такая же.
Лампа разборная. Пластмассовый цоколь на резьбе (с большим усилием!) выкручивается из радиатора. Белое пластмассовое кольцо придерживает защитное прозрачное стекло и металлический жестяной отражатель. За отражателем прячется сложный многосегментный светодиод (я насчитал 35 сегментов в матрице 7x5).
Контроллер дает на выходе 21.2V, 0.29A. Температура радиатора возле светодиода 66oC, температура поверхности светодиода 133oC (!).
Контроллер построен на микросхеме BP9023. К сожалению, микросхема настолько китайская, что даташита на неё на английском языке просто нет.
Схема построена по принципу обратноходового однотактного преобразователя, очень похожа на схему с контроллером BP2831A. Резисторы RS1 и RS2 задают ограничение по выходному току, резистор R4 скорее всего (по аналогии с контроллером BP2831A) задает порог защиты по напряжению. Цепочка D1R5R6C4 служит для демпфирования высоковольтных выбросов напряжения на стоке ключевого транзистора микросхемы.
Осциллограммы потребляемого тока на входе контроллера.
Осциллограмма пульсаций светового потока - как видно на осциллограмме, пульсации света незначительные (около 8%), и они на высокой частоте порядка 50 кГц. Радиопомехи в диапазонах КВ и УКВ лампа дает довольно значительные (см. таблицу 2). Возможно это из-за длинных соединительных проводов на входе и выходе контроллера, и из-за жесткого импульсного режима контроллера.
Эта лампа мне очень понравилась. Она компактная, имеет алюминиевый радиатор, темно-серый пластиковый цоколь из термостойкой пластмассы.
Лампа Ecola 7w 4200K GU10
Лампа не предназначена для разборки, но если Вы все же на это решились, то начинать нужно с матового защитного стекла. Оно приклеено по краям мастикой к алюминиевому радиатору. Отклеить стекло очень сложно, не повредив его (у меня не получилось). Под стеклом прячется печатная плата на алюминиевой основе, на которой стоят 14 светодиодов, включенных последовательно. Печатная плата прижата к радиатору стопорным кольцом, и место контакта платы и радиатора промазано теплопроводящей пастой. Печатная плата односторонняя, и довольно тонкая (0.6 мм), что служит улучшению теплообмена между светодиодами и радиатором.
Пластмассовый цоколь крепится к радиатору двумя саморезами, головки которых незаметны под мастикой.
Контроллер дает на выходе 81V, 0.066A. Температура платы возле светодиода 55oC. Контроллер собран на миниатюрной плате, которая целиком помещается в цоколь, входы и выходы контроллера подключены проводами минимальной длины. Вокруг контроллера со всех сторон пластмасса, поэтому замыкания исключены.
Конструкция в целом очень аккуратная и продуманная, и не удивительно, что контроллер совсем не излучает радиопомех, и пульсации светового потока не улавливаются фотоприемником (их просто нет!). Контроллер построен на микросхеме BP2831A, схема очень простая.
Ниже показаны осциллограммы потребления контроллером от сети переменного тока 220В.
А это осциллограмма светового потока. Не видно никаких пульсаций - ни НЧ, ни ВЧ.
Лампа полностью разборная. Но выглядит по сравнению с предыдущей лампой Ecola 7w 4200K GU10 как бедная родственница. Куда подевались лоск разработки конструкции и качество сборки? Несмотря на цоколь GU5.3, лампа имеет большие размеры и из-за массивного радиатора довольно тяжелая. В патроне без дополнительного крепления держаться она не будет. При выкручивании нижних винтов (которые крепят цоколь к радиатору) будьте осторожны, потому что головки винтов некачественные, и винты выкручиваются с усилием.
Свет излучают 3 включенных последовательно светодиода. Радиатор сделан так, что служит и корпусом лампы, и рефлектором. Температура платы возле светодиода 60oC. Спереди имеется защитное стекло с тремя линзами, которое крепится на винтах.
Контроллер построен на микросхеме BP3122, выдает на выходе 9.6V, 0.41A. Плата контроллера спроектирована очень тщательно и имеет маленькие размеры. Для монтажа используются обе стороны платы, и многие SMD-компоненты смонтированы прямо под трансформатором. Меня несколько удивило, что на выходе контроллера нет фильтрующего конденсатора. Наверное этим как раз и объясняются высокочастотные пульсации светового потока.
К сожалению, лампа не может похвастаться низким уровнем радиопомех, и световой поток на выходе имеет большие пульсации на частоте 67.5 кГц (см. таблицу 2).
Лампа не только неразборная, но даже внутри залита эластичным белым пластиком, напоминающим резину. Радиатора нет, 10 светодиодов установлены на алюминиевой плате.
Контроллер построен на микросхеме BP2832A, дает на выходе 59V, 0.096A. Температура платы возле светодиода 83oC, т. е. светодиоды имеют не самый лучший тепловой режим.
Микросхема BP2832A по цоколевке полностью совпадает с микросхемой BP2831A (да и по параметрам они отличаются только мощностью, BP2832A мощнее, см. даташиты [2]). Поэтому принципиальная схема контроллера отличается от схемы BP2831A (применена в лампе Ecola 7w 4200K GU10) только наличием дополнительных фильтрующих элементов (C1, L1).
Несомненные достоинства лампы - малые размеры, почти полное отсутствие радиопомех, малые высокочастотные пульсации тока потребления и маленький уровень пульсаций светового потока.
Хорошая лампа! Однако для улучшения охлаждения желательно использовать лампу в открытом плафоне.
Лампа неразборная. Для вскрытия мне пришлось распилить её корпус дремелем. Лампа имеет маленький рефлектор для многосегментного светодиода, который совсем не прикрыт защитным стеклом. Радиатор отсутствует. Температура алюминиевого основания возле светодиода 87oC.
К сожалению, при попытке сковырнуть крышку я случайно ударил отверткой по поверхности светодиода, в результате в нем получился обрыв. Поэтому измерять параметры контроллера пришлось с похожим многосегментным светодиодом из другой лампы.
В испорченном светодиоде было 17 излучающих сегментов. По выходному току 0.13A, потребляемой мощности лампы 8 Вт и предполагаемому КПД я высчитал ориентировочно выходное напряжение 53 вольта.
Контроллер построен на микросхеме SL21083 компании NXT (в даташите она именуется как SSL21083T, см. [2]).
Схема традиционная, с дополнительными фильтрующими элементами входного тока Rf1, C1, L1. По уровню радиопомех это очень хороший контроллер, помех почти нет. Пульсации светового потока незначительные, и они на высокой частоте 86 кГц.
Лампа неплохо разбирается, пока не дойдешь до контроллера в цоколе (он залит компаундом). Защитное стеклышко можно снять, освободив 4 защелки.
Под ней скрыта плата с 17 светодиодами, включенными последовательно.
Плата прикручена к радиатору 2 винтами. Если открутить эти 2 винта, и отпаять + и - выхода контроллера, то можно снять плату, и откроется доступ к 2 саморезам, удерживающим пластмассовый цоколь на радиаторе. В цоколе прячется контроллер (см. фото).
Контроллер дает на выходе 100V, 0.046A, и назвать его высокотехнологичным никак нельзя. В качестве ограничителя тока через светодиод выступает обыкновенный конденсатор. Вытащить контроллер из цоколя можно только если высверлить запрессовку проводов в силовых контактах лампы.
Такая простая схема грозит бросками тока через светодиоды при включении лампы, и при наличии в сети импульсов помех, что легко может вывести из строя светодиоды, или диодный мост. Я ни в коем случае не советую покупать такую лампу. К тому же цена 300 рублей (см. таблицу) выглядит на фоне других ламп выглядит совершенно неоправданной.
Лампа имеет отличные характеристики по уровню радиопомех (они отсутствуют, что и должно быть, так как импульсного контроллера нет), но есть большие пульсации светового потока на частоте 100 Гц (80..90% от максимума).
Лампа разборная, снять верхнее фиксирующее алюминиевое кольцо с радиатора можно, если открутить его по резьбе. Я сразу не догадался, подумал что оно напрессовывается, и спилил его. Кольцо фиксирует защитное стекло и сам светодиод. Светодиод многосекционный, очень большого размера. Сколько там излучающих сегментов, понять невозможно, так как светодиод залит желтым пластиком. Светодиод также имеет тонкую металлическую алюминиевую подложку, которая с помощью серой термопасты (я весь ею измазался) передает тепло радиатору. Температура радиатора разогретой лампы 43oC. К сожалению, померять температуру возле основания светодиода не смог, так как он большой, и лампа оказалась практически разобрана (т. е. светодиод уже неплотно прилегает к радиатору, и эксперимент с измерением температуры даст неверный результат). Пластмассовый цоколь лампы можно вывинтить из радиатора, однако на этом разборка завершается - контроллер залит внутри радиатора белым эластичным компаундом (похож на силиконовый герметик). Мне удалось расковырять заливку и вытащить контроллер.
Контроллер дает на выходе 21V, 0.27A, оказался собранным на микросхеме LIS8512. Схема простая, причем демпферный диод на выходе ключа отсутствует.
Лампа имеет плохие характеристики по уровню радиопомех (фонит на всех диапазонах). По уровню пульсаций светового потока все отлично, есть только незначительные пульсации света на высокой частоте.
Лампа разбирается до цоколя, в котором установлена плата с контроллером, который дает на выходе 46.5V, 0.128A. Температура радиатора разогретой лампы 55oC. Защитное стекло снимается, если освободить 3 защелки через специальные отверстия.
Под стеклом установлена алюминиевая плата с 14 светодиодами, которая винтами крепится к радиатору. Этими же винтами к радиатору крепится пластмассовый цоколь.
Вытащить контроллер из цоколя можно только если высверлить запрессовку проводов в силовых контактах лампы. Контроллер собран по довольно сложной схеме, на основе загадочной микросхемы ALT1115TR (маркировка HH3GE) в корпусе SOT23-6. Даташит на эту микросхему найти не удалось, и перерисовывать схему этого контроллера я не стал.
Для потребителя лампа ничем особым не выделяется, кроме как высокой ценой и красивой упаковкой. А вот осциллограммы у лампы довольно необычные, и довольно значительные низкочастотные пульсации светового потока.
Посмотрите на осциллограмму входного тока контроллера - она говорит о том, что это полноценный контроллер с коррекцией коэффициента мощности, т. е. для питающей сети это почти идеальная активная нагрузка, а что очень хорошо. Gauss EB101106107 единственная лампа в обзоре, которая обладает такими свойствами. Теперь понятно, почему эта лампа так дорого стоит.
Как и лампа Jazzway 7.5w 2700K GU10, лампа ASD JCDRC 7.5w сделана с простейшим ограничителем тока на конденсаторе 1.2 мкф 400V, который дает на выходе 100V, 0.045A. Поэтому схему перерисовывать смысла нет, она такая же. Температура радиатора разогретой лампы 60oC. Разборку лампы начинают со снятия стекла, путем освобождения 4-х защелок.
Под стеклом находится алюминиевая плата с 17 светодиодами, прижатая к радиатору 2 винтами. Если эти винты открутить, то под ней есть еще 2 самореза, которые удерживают пластмассовый цоколь на радиаторе.
В цоколе находится плата с конденсаторным ограничителем тока. Вытащить плату можно, если высверлить провода, запрессованные в силовых контактах.
[Как оценивались параметры ламп]
Осциллограммы тока потребления снимались с помощью трансформатора тока, включенного последовательно с тестируемой лампой. Осциллограммы светового потока снимал с помощью солнечной батареи от садового светильника. Уровень помех условно (на слух) оценивался с помощью радиоприемника Ленинград-006 по шкале от 0 (помех нет) до 10 (максимальный уровень помех).
Данные по всем лампам я для наглядности свел в таблицу. Зеленым фоном выделены "хорошие" параметры, а оранжевым "плохие". В верхней части таблицы приведены официальные данные, которые можно прочитать на упаковке или на сайте производителя лампы, а в нижней экспериментальные данные.
[Словарик]
CRI Colour Rendering Index, индекс цветопередачи [1]. Параметр лампы от 0 до 100, который характеризует качество цветовосприятия под освещением. Наилучший показатель 100, соответствует лампам накаливания. CRI то же самое, что и Ra.
LED Light Emitting Diode, светодиод.
Ra то же самое, что и CRI.
[Ссылки]
1. Индекс цветопередачи site:ru.wikipedia.org. 2. 140728bbk.zip - даташиты на микросхемы контроллеров, фотографии ламп, осциллограммы. 3. Коэффициент мощности site:ru.wikipedia.org.
Привет Андрюх. Меня, право, удивило твое описание лампы Ecola 6w 2800K GU5.3 Я себе купил 10 штук вот таких http://www.ecola-im.ru/index.php?id=409&view=product Они добротные и НИКАКИХ помех я от них не обнаружил (работают 10 штук вместе). Если есть желание, попробуй их протестить.
Драйвер от bbk pc73c продается на aliexpress, уже сделал несколько светильников на его основе для дома. Себестоимость получается 100 руб. за светильник 7 Вт.
Емкость гасящего конденсатора 125 означает 1.2 мкФ, а не 12 мкФ. У меня лампа Jazway на 8 Ватт, так в ней стоят два конденсатора в параллель по 1 мкФ и еще 0.22 мкФ. Конденсатор фильтра на 15 мкФ х 100 В для снижения пульсаций света нужно увеличить до 100 мкФ.
Комментарии
Ну не может такого быть. Слишком мало напряжение на одном белом светодиоде. Или там две параллельные ветки, или неправильно замеряли напряжение.
Я себе купил 10 штук вот таких http://www.ecola-im.ru/index.php?id=409&view=product
Они добротные и НИКАКИХ помех я от них не обнаружил (работают 10 штук вместе). Если есть желание, попробуй их протестить.
microsin: благодарю, исправил.
RSS лента комментариев этой записи